Digital solutions, empowered with machine learning methods, to optimize water quality management in Singapore catchments

SIWW 2022

19/04/2022

Outline

j.	Main Challenges
Ģ	Solution
Ţ	Water Quality Management System
~	Key Benefits

Challenges in Surface Water Quality Management

Balance

Recreational use and potable water production

Optimize

Reservoir stock and water quality within the intricate network

suez

Control

Volatility in water quality of urban catchments

Solution – Integrated system

suez

PUB – SUEZ Partnership to develop Catchment and Waterways Operations System (CWOS)

From reactive to prescriptive operations, designed by operators for operators

Powered by AQUADVANCED[®] Urban Drainage

suez

Fundamental monitoring system

Water quality monitoring

1

- Single dashboard with all the information
 - Rain gauge
 - Water Level sensor
 - Flow sensor
 - Weather sensor
 - WQ sensor
 - WQ lab data
- Real-time monitoring and warning about anomalies, which improves operational efficiency

Customized digital transformation

2 Nutrient load dashboard

- Facilitate nutrient control planning and management
 - Automate nutrient load calculation
 - Visualize results through heat-maps and in a ranked table view
 - Provide a drill-down navigation for fast assessment

SUez

Customized digital transformation

3 Mass balance simulator

- Support operational decision making on reservoir water transfers
 - Model based on mass conservation law, rapid assessment by considering both water quantity and water quality
 - Provide flexibility to users on defining scenarios
 - Comparison of results for multiple scenarios at one glance

SUez

Customized digital transformation

4 Water quality models

- Facilitate mitigation plans ahead using online forecast module
 - Integration of 1D and 3D models
 - Automated alarms via emails when a threshold is exceeded
 - Provide visualization of results by map view and table view

SUez

Advanced analytics

Geospatial Mapping and Machine Learning to WQ Sensor Monitoring

Objective: Smarter Alerts and Interpretations

- > Explore connections among online sensors (data and geographical information both)
- Incorporate AI into WQ alert advisory to support operations on site

Phase 4

IT integration

What's next ?

What-if scenario display for Water Quality models More integration with workflows and other systems Continuous improvement of analytics Extension of water quality models to all reservoirs

Key benefits

Streamline operations

Data consolidation improves workflows and transparency of processes in catchment and waterways. This facilitates better insights on the ground situation.

Thereby resulting in **more informed decision-making** during operations and improving overall operational efficiency.

Better preparedness

Real-time identification improves response time;

Forecasting capabilities enable authorities to plan justified, mitigative measures ahead of time.

@suez

Optimized cost

Ladisatelating

Automation, strategic use of human resources, advanced data analytics and proactive approach to resource usage translate to cost-savings in the long run.

Thank you

